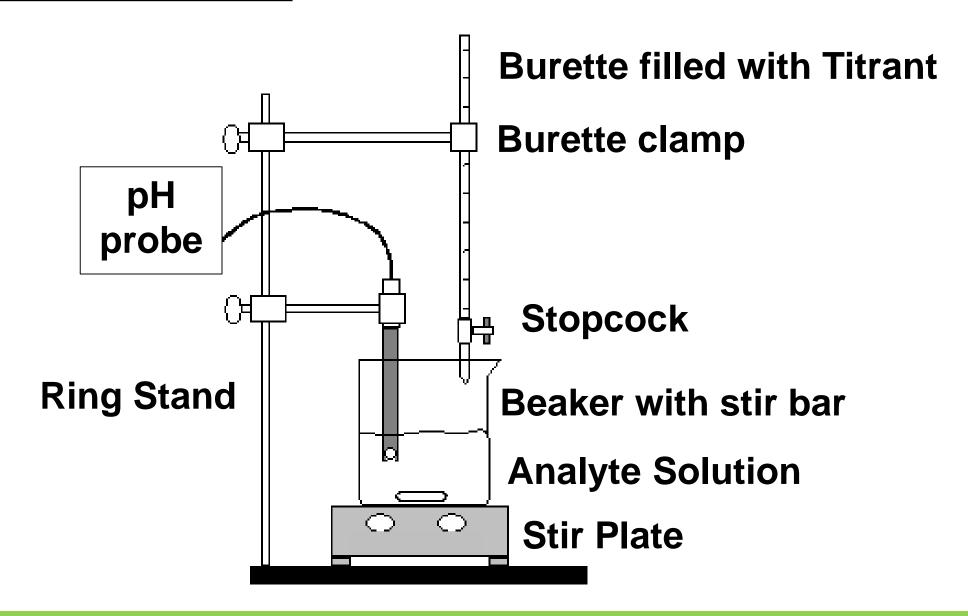
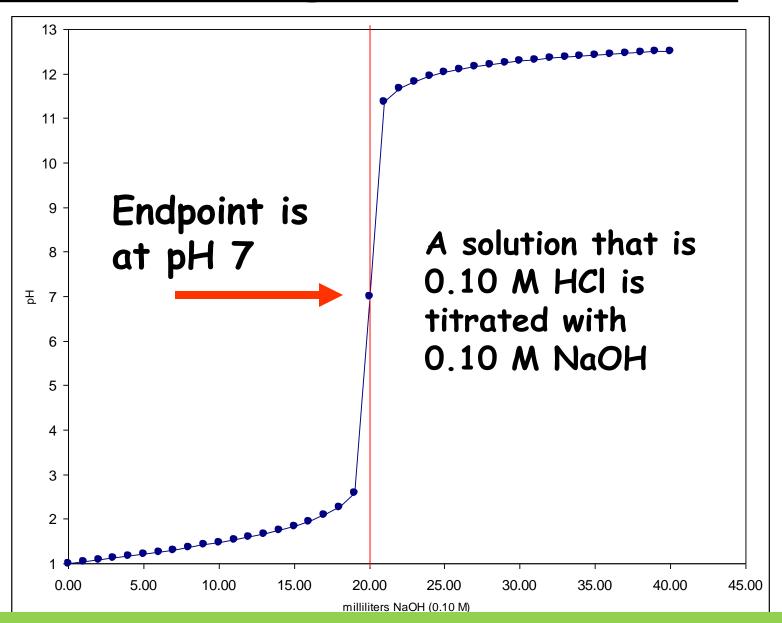
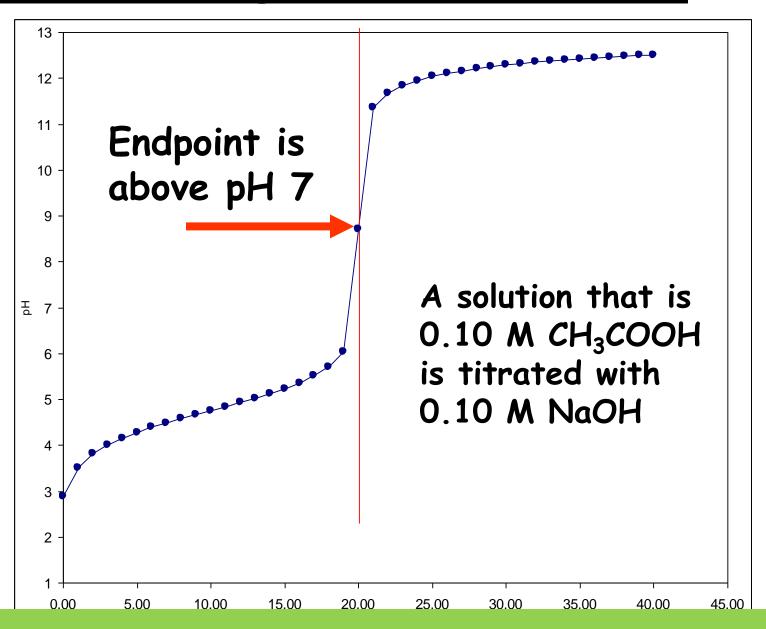

N41-Acid Base

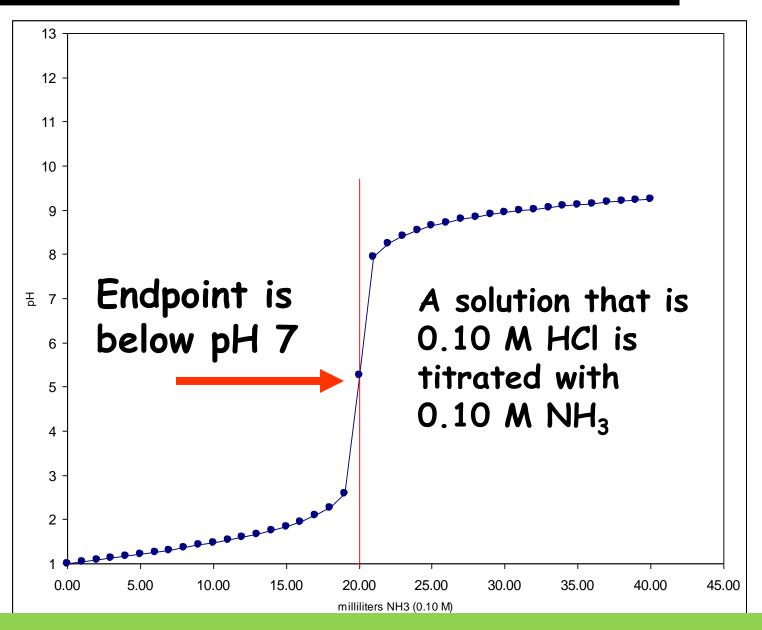
Target: I can perform titration calculations.

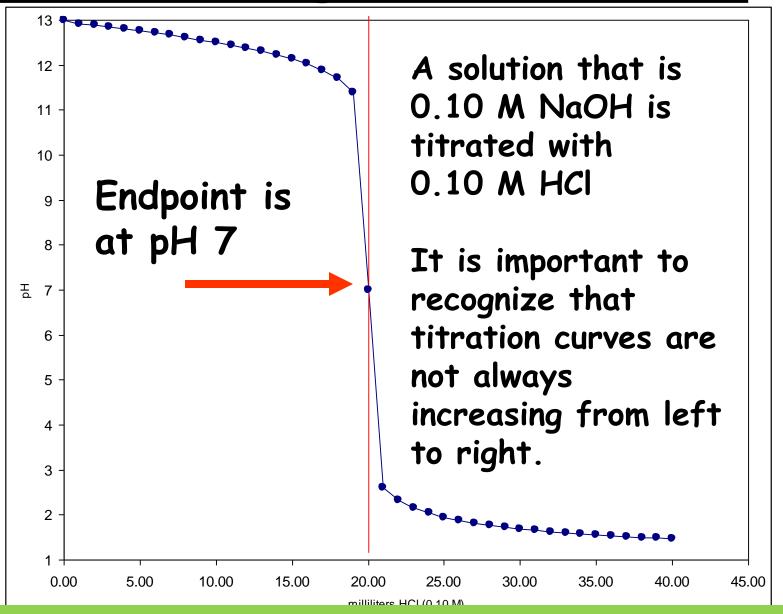

N41—Acid Base

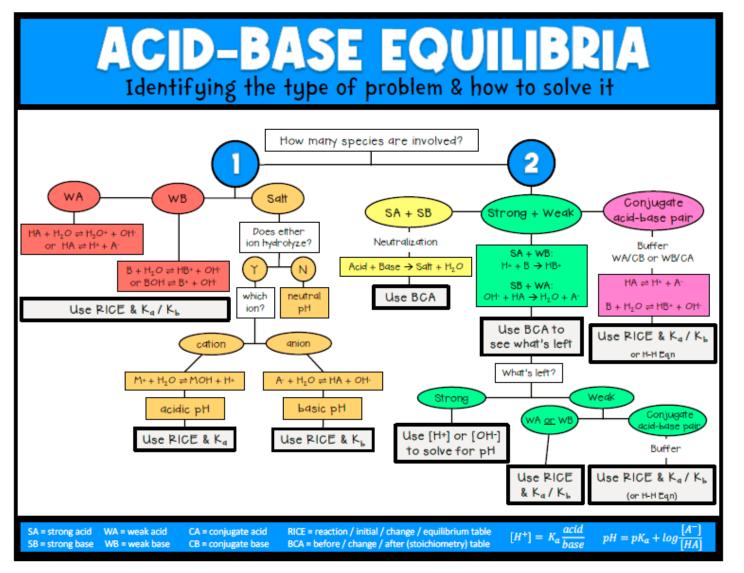
Titration

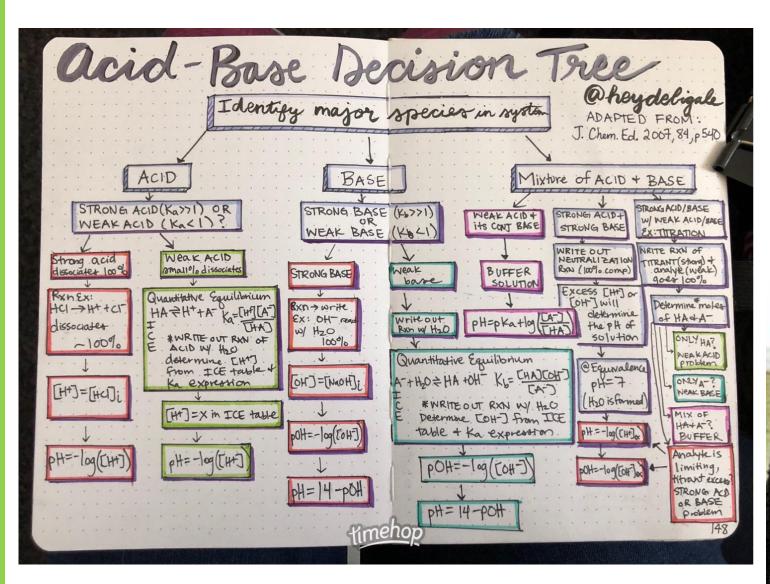

Titration Set Up

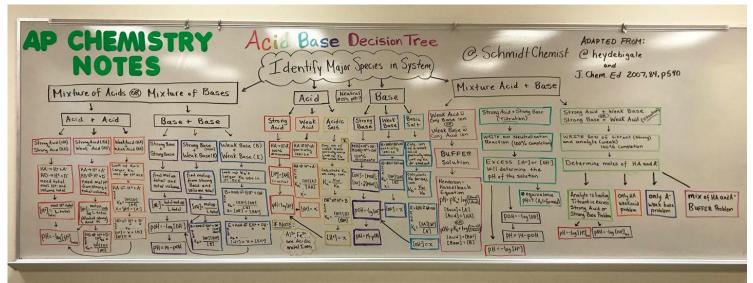

Titration Set Up


Strong Acid/Strong Base Titration


Weak Acid/Strong Base Titration


Strong Acid/Weak Base Titration


Strong Acid/Strong Base Titration



BRACEYOURSELF

Calculations to Plot a Titration Curve

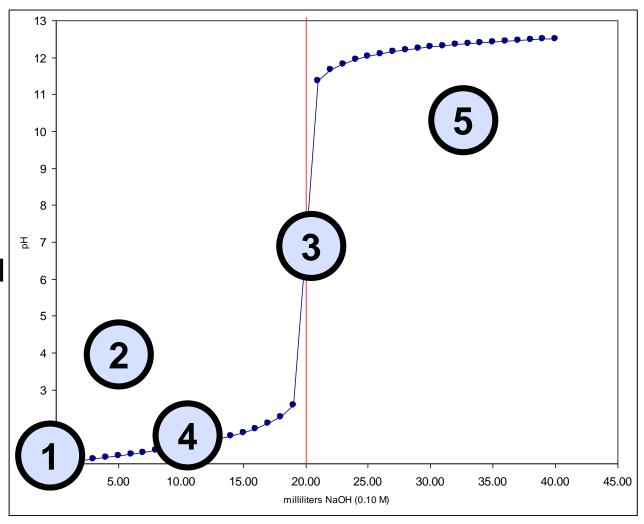
1. Starting pH

If weak, then ICE table then pH

2. Early on during titration

Stoich then He-Ha

3. Equivalence Point


- mol acid = mol base
- No more buffer! Reverse rxn
- Calc new K value ICE then pH

4. ½ Way Point

- ½ moles @ eq.pt
- pH = pKa

5. Towards end of titration

- Extra titrant left over
- Stoich then simple pH

Lets look at the titration of acetic acid w/ NaOH

BEFORE TITRATION

- Starting point:
 - -25 ml of 0.15M Acetic Acid ($K_a = 1.8E^{-5}$)
 - Calculate pH before any titrant is added
 - ICE TABLE! Then pH calculation

C ₂ H ₃ OH	↔ H ⁺	
0.15 M	0 M	0 M
- X	+ X	+ X
0.15 - x	X	X
0.15	X	X

$$K = \frac{[H^{+}][C_{2}H_{3}O^{-}]}{[C_{2}H_{3}OH]}$$

1.8 x 10⁻⁵ =
$$\frac{(x)(x)}{0.15}$$

$$x = 1.64 \times 10^{-3}$$

$$pH = -log[H^+]$$

$$pH = -log(1.64 \times 10^{-3})$$

DURING THE TITRATION

- Add 10ml of 0.10 M NaOH
 - Determine stoichiometry
 - Notice! You have a buffer now.
 - You have a conjugate base!

mol base

Use He-Ha eq.

25 ml 1 l 0 15 mol

1000 mL 1 L

20 IIIL	1000 mL	1 L	= 3.75x10 ⁻¹ mol acid
10 mL	1 L	0.10 mol	$= 1.0 \times 10^{-3}$

People like to use these "mole tables" – they are NOT ICE TABLES! They have moles not concentrations. **BE CAREFUL!**

	OH⁻ ∢	\rightarrow H ₂ O	$C_2H_3O^-$
3.75 mmol	1 mmol	0	0
-1 mmol	-1 mmol	+1 mmol	+1 mmol
2.75 mmol	0 mmol	1mmol	1mmol

Have to convert to M before using He-Ha!

$$[C_2H_3OH] = \frac{2.75 \times 10^{-3} mol}{(0.025 L + 0.010 L)} = 0.0786 M$$

$$[C_2H_3O^{-}] = \frac{1.00 \times 10^{-3} mol}{(0.025 L + 0.010 L)} = 0.0286 M$$

NOW you can use He-Ha

DURING THE TITRATION

- Add 10ml of 0.10 M NaOH
 - Determine stoichiometry
 - Notice! You have a buffer now.
 - You have a conjugate base!
 - Use He-Ha eq.

$$[C_2H_3OH] = \frac{2.75 \times 10^{-3} mol}{(0.025 L + 0.010 L)} = 0.0786 M$$

$$[C_2H_3O^{-}] = \frac{1.00 \times 10^{-3} mol}{(0.025 L + 0.010 L)} = 0.0286 M$$

$$pH = pKa + log\left(\frac{[A^-]}{[HA]}\right)$$

$$pH = -log(1.8x10^{-5}) + log\left(\frac{0.0286 M}{0.0786 M}\right)$$

$$pH = 4.31$$

People like to use these "mole tables" – 2
they are NOT ICE TABLES! They have

DURING THE TITRATION AGAIN moles not concentrations. BE CAREFUL!

- Add 25ml of 0.10 M NaOH
 - Determine stoichiometry
 - Notice! You have a buffer now.
 - You have a conjugate base!
 - Use He-Ha eq.

C ₂ H ₃ OH	OH⁻ ←	→ H ₂ O	$C_2H_3O^-$
3.75 mmol	2.5 mmol	0	0
-2.5 mmol	-2.5 mmol	+2.5mmol	+2.5mmol
1.25 mmol	0 mmol	2.5 mmol	2.5 mmol

Have to convert to M before using He-Ha!

25 mL	1 L	0.15 mol	= 3.75x10 ⁻³
	1000 mL	1 L	mol acid
25 mL	1 L	0.10 mol	$= 2.5 \times 10^{-3}$
	1000 mL	1 L	mol base

$$[C_2H_3OH] = \frac{1.25 \times 10^{-3} mol}{(0.025 L + 0.025 L)} = 0.025 M$$
$$[C_2H_3O^{-}] = \frac{1.00 \times 10^{-3} mol}{(0.025 L + 0.025 L)} = 0.050 M$$

NOW you can use He-Ha

DURING THE TITRATION AGAIN

- Add 25ml of 0.10 M NaOH
 - Determine stoichiometry
 - Notice! You have a buffer now.
 - You have a conjugate base!
 - Use He-Ha eq.

$$[C_2H_3OH] = \frac{1.25 \times 10^{-3} mol}{(0.025 L + 0.025 L)} = 0.025 M$$

$$[C_2H_3O^-] = \frac{1.00 \times 10^{-3}mol}{(0.025 L + 0.025 L)} = 0.050 M$$

$$pH = pKa + log\left(\frac{[A^-]}{[HA]}\right)$$

$$pH = -log(1.8x10^{-5}) + log\left(\frac{0.050 M}{0.025 M}\right)$$

$$pH = 5.05$$

AT EQUIVALENCE POINT

- Add? ml of 0.10 M NaOH
 - Determine stoichiometry

		0.15 mol	= 3.75x1	∩- 3	
	1000 m	L 1 L	mol acid	U °	
3.75x1	0 ⁻³ mol	1 L	1000 mL	= 37.5 mL base to get	
		0.10 mol	1 L	to equivalence point	

AT EQUIVALENCE POINT

- Add 37.5 ml of 0.10 M NaOH
 - Determine stoichiometry
 - Notice! You have NO BUFFER LEFT!
 - You have NO weak acid left!!

People like to use these "mole tables" – they are NOT ICE TABLES! They have moles not concentrations. **BE CAREFUL!**

C ₂ H ₃ OH	OH-	\leftrightarrow H ₂ O	$C_2H_3O^-$
3.75mmol	3.75mmol	0	0
-3.75mmol	-3.75mmol	+3.75mmol	+3.75mmol
0 mmol	0 mmol	3.75mmol	3.75mmol

Have to Reverse the Rxn, new ICE table!

AT EQUIVALENCE POINT

- Add 37.5 ml of 0.10 M NaOH
 - Determine stoichiometry
 - Notice! You have NO BUFFER LEFT!
 - You have NO weak acid left!!

People like to use these "mole tables" – they are NOT ICE TABLES! They have moles not concentrations. **BE CAREFUL!**

C ₂ H ₃ OH	OH⁻ ⟨ ⟩	H ₂ O	$C_2H_3O^-$
3.75mmol	3.75mmol	0	0
-3.75mmol	-3.75mmol	+3.75mmol	+3.75mmol
0 mmol	0 mmol	3.75mmol	3.75mmol

Remember to use M in ICE Table not moles!

$$[C_2H_3O^{-}] = \frac{3.75 \times 10^{-3} mol}{(0.025 L + 0.0375 L)} = 0.060 M$$

Have to Reverse the Rxn, new ICE table!

	H₂O ←	\rightarrow C ₂ H ₃ OH	OH-
0.06 M	-	0	0
- X	-	+ X	+ X
0.06	-	X	X

AT EQUIVALENCE POINT

- Add 37.5 ml of 0.10 M NaOH
 - Determine stoichiometry
 - Notice! You have NO BUFFER LEFT!
 - You have NO weak acid left!!

People like to use these "mole tables" – they are NOT ICE TABLES! They have moles not concentrations. **BE CAREFUL!**

C ₂ H ₃ OH	OH⁻ ←	→ H ₂ O	$C_2H_3O^-$
3.75mmol	3.75mmol	0	0
-3.75mmol	-3.75mmol	+3.75mmol	+3.75mmol
0 mmol	0 mmol	3.75mmol	3.75mmol

Remember to use Kb this time!

$$Kw = Ka \times Kb$$
 $Kb = \frac{Kw}{Ka}$

$$Kb = \frac{(1 \times 10^{-14})}{(1.8 \times 10^{-5})} = 5.56 \times 10^{-10}$$

Have to Reverse the Rxn, new ICE table!

	H₂O ←	\rightarrow C ₂ H ₃ OH	OH-
0.06 M	-	0	0
- X	-	+ X	+ X
0.06	-	X	X

AT EQUIVALENCE POINT

- Add 37.5 ml of 0.10 M NaOH
 - Determine stoichiometry
 - Notice! You have NO BUFFER LEFT!
 - You have NO weak acid left!!

Remember to use Kb this time!

$$Kw = Ka \times Kb$$
 $Kb = \frac{Kw}{Ka}$

$$Kb = \frac{(1 \times 10^{-14})}{(1.8 \times 10^{-5})} = 5.56 \times 10^{-10}$$

C ₂ H ₃ O ⁻	H₂O ←	→C ₂ H ₃ OH	OH-
0.06 M	-	0	0
- X	-	+ X	+ X
0.06	-	X	X

$$5.56 \times 10^{-10} = \frac{(x)(x)}{0.06}$$

$$x = 5.77 \times 10^{-6} = [OH^{-}]$$

Now you can do pH calculation!

3

AT EQUIVALENCE POINT

- Add 37.5 ml of 0.10 M NaOH
 - Determine stoichiometry
 - Notice! You have NO BUFFER LEFT!
 - You have NO weak acid left!!

Stop and check that it makes sense!

Weak Acid + Strong Base Equivalence Point should be Basic Yes, 8.76 makes sense!

Now you can do pH calculation!

$$x = 5.77 \times 10^{-6} = [OH^{-}]$$

$$pOH = -log(5.77 \times 10^{-6}) = 5.24$$

 $pH = 14 - pOH$
 $pH = 14 - 5.24$ pH = 8.76

AT 1/2 WAY POINT

- It took 37.5 ml of NaOH to get to eq.pt
 - So half way to eq. pt. would be 18.75 mL of NaOH

$$@ \frac{1}{2}$$
 way point pH = pKa

$$pH = -log(1.8 \times 10^{-5})$$
 $pH = 4.74$

Why calculate pH at the ½ way point? It is a nice point to plot on a graph to help get the curve. Also - when doing a titration, you can figure out the Ka by finding the pH at the halfway point.

AT THE END OF TITRATION

- Add 50mL of 0.10 M NaOH
 - Still no buffer anymore...used up all the weak acid.
 - BUT…you are past the equivalence point!
 - Now you have excess OH-

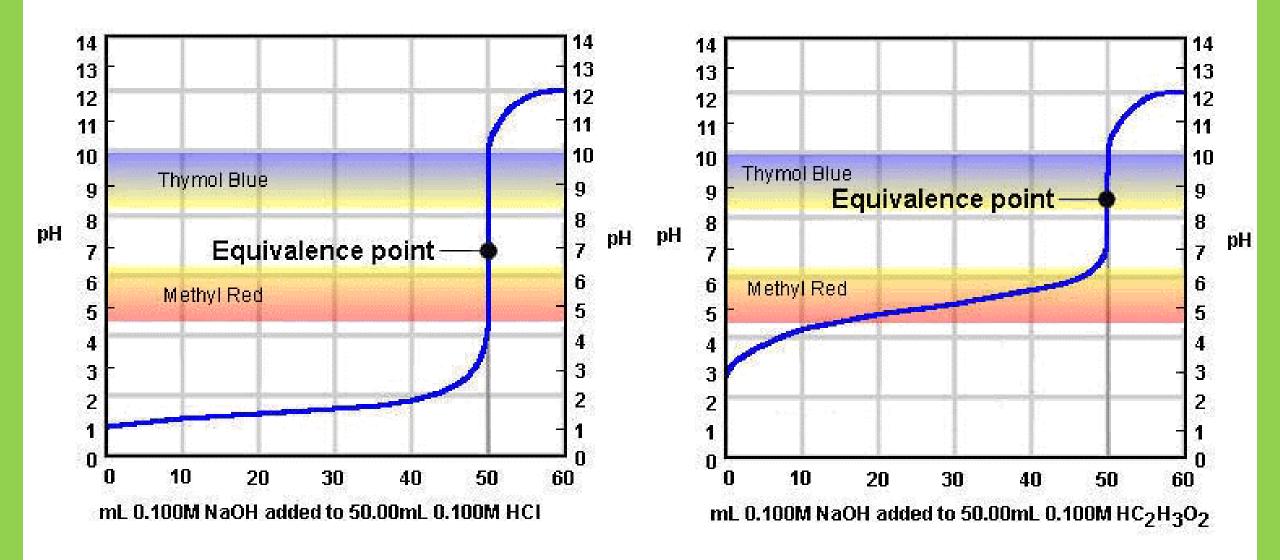
50mL	1 L	0.10 mol	$= 5 \times 10^{-3}$
	1000 ml	4 1	$= 5 \times 10^{\circ}$
	1000 mL	1 L	mol base

Do stoich to find how much left

	oh- ↔	H ₂ O	C ₂ H ₃ O ⁻
3.75mmol	5 mmol	0	0
-3.75mmol	– 3.75mmol	+3.75mmol	+3.75mmol
0	1.25mmol	3.75mmol	3.75mmol

Remember to use M in pH calculations!

$$[OH^{-}] = \frac{1.25 \times 10^{-3} mol}{(0.025 L + 0.050 L)}$$


$$[OH^{-}] = 0.0167 M$$

$$pOH = -log(0.0167) = 1.78$$

$$pH = 14 - pOH = 14 - 1.78$$

$$pH = 12.22$$

Selection of Indicators

pH Indicators and Ranges

How do you know which indicator to pick for a reaction?

Pick the one that changes color in a pH range that is +/- 1 from the pKa of the reaction you are doing.

Example: pKa 2 Choose something that changes in the 1 – 3 range.

Some Acid-Base Indicators

Indicator	pH Range in which Color Change Occurs	Color Change as pH Increases
Crystal violet	0.0 - 1.6	yellow to blue
Thymol blue	1.2 - 2.8	red to yellow
Orange IV	1.4 - 2.8	red to yellow
Methyl orange	3.2 - 4.4	red to yellow
Bromcresol green	3.8 - 5.4	yellow to blue
Methyl red	4.8 - 6.2	red to yellow
Chlorophenol red	5.2 - 6.8	yellow to red
Bromthymol blue	6.0 - 7.6	yellow to blue
Phenol red	6.6 - 8.0	yellow to red
Neutral red	6.8 - 8.0	red to amber
Thymol blue	8.0 - 9.6	yellow to blue
Phenolphthalein	8.2 - 10.0	colourless to pink
Thymolphthalein	9.4 - 10.6	colourless to blue
Alizarin yellow	10.1 - 12.0	yellow to blue
Indigo carmine	11.4 - 13.0	blue to yellow

YouTube Link to Presentation

WWW.